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Today’s Objectives

* Review of linear algebra

Disclaimer: Material used:

* Deep Learning, lan Goodfellow, Yoshua Bengio and Aaron
Courville

* Introduction to Applied Linear Algebra: Vectors, Matrices,
and Least Squares, Stephen Boyd ,Lieven Vandenberghe

http://vmls-book.stanford.edu/
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Vectors

» a vector is an ordered list of numbers

» Written as
G —1.1
0.0 0.0
36 | & 3.6
| e | -7.2

or (—=1.1.0,3.6,-7.2)
» numbers in the list are the elements (entries, coefficients, components)
» number of elements is the size (dimension, length) of the vector
» vector above has dimension 4; its third entry is 3.6
» vector of size n is called an n-vector

» numbers are called scalars
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Zeros, ones and unit vectors

n-vector with all entries 0 is denoted 0,, or just O
n-vector with all entries 1 is denoted 1,, or just 1
a unit vector has one entry 1 and all others 0
denoted ¢; where i is entry that is 1

unit vectors of length 3:

- e
e1=| 0], e=|1], @ea=
_0- _O-
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Sparsity

a vector is sparse if many of its entries are 0
can be stored and manipulated efficiently on a computer
nnz(x) is number of entries that are nonzero

examples: zero vectors, unit vectors
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Linear combinations
> forvectors ay.....a, and scalars Gi...., B,

piay + - -+ + Bmam
is a linear combination of the vectors
> B1....,[0n are the coefficients
» a Very important concept

» a simple identity: for any n-vector b,

b:blffl-i-"'-i-b”é’”
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Example

two vectors a; and a», and linear combination b = 0.75a; + 1.3a»
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Flop counts

computers store (real) numbers in floating-point format

basic arithmetic operations (addition, multiplication, ...) are called floating
point operations or flops

complexity of an algorithm or operation: total number of flops needed, as
function of the input dimension(s)

this can be very grossly approximated
crude approximation of time to execute: computer speed/flops
current computers are around 1Gflop/sec (10 flops/sec)

but this can vary by factor of 100
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Complexity of vector addition, inner product

X + y needs n additions, so: n flops
x!'y needs n multiplications, n — 1 additions so: 2n — 1 flops
we simplify this to 2n (or even n) flops for x’y

and much less when x or y is sparse
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Superposition and linear functions

» £ R" - R means f is a function mapping n-vectors to numbers

» f satisfies the superposition property if

flax+ By) = af (x) + Bf(y)
holds for all numbers «, 8, and all n-vectors x,y

» Dbe sure to parse this very carefully!

» a function that satisfies superposition is called linear
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The inner product function

» with ¢ an n-vector, the function
T . T L ) i )
fx) =a x=ayx) +axx2 + -+ apxy,

is the inner product function
» f(x) is a weighted sum of the entries of x

» the inner product function is linear:

al (ax + By)
— aT((}',..\') + ClT(ﬂ_y)
= a(a'x)+ Bla'y)

af (x) + Bf(y)
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A 4

...and all linear functions are inner products

suppose f : R" — Ris linear
then it can be expressed as f(x) = a! x for some «a
specifically: a; = f(e;)

follows from

J(x) = f(xie +xex + -+ xyep)

= x1f(e1) + x2f(e2) + -+ + xpf (€n)
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Affine functions

a function that is linear plus a constant is called affine
general form is f(x) = alx + b, with a an n-vector and b a scalar

a function f : R" — R is affine if and only if

flax + By) = af (x) + Bf(y)
holds for all @, 8 with & + 8 = 1, and all n-vectors x, y

sometimes (ignorant) people refer to affine functions as linear
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Linear versus affine functions

f is linear g is affine, not linear

f(x) g(x)

\

\
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First-order Taylor approximation
» supposef : R" - R

» first-order Taylor approximation of f, near point z:

of

Fx)=f2) + =—(@)(x; —z1) + -

0x |

y
X,
0x,

» f(x) is very close to f(x) when x; are all near z;

» fis an affine function of x

» can write using inner product as

Fx) =f) + V() (x-2)

where n-vector Vf(z) is the gradient of f at z,
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Example
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Regression model

regression model is (the affine function of x)
y=xIB+v
x is a feature vector; its elements x; are called regressors

n-vector S is the weight vector

scalar v is the offset

scalar y is the prediction
(of some actual outcome or dependent variable, denoted y)
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Example

v is selling price of house in $1000 (in some location, over some period)

regressor is
x = (house area, # bedrooms)

(house area in 1000 sq.ft.)

regression model weight vector and offset are
B =(148.73,-18.85), v =54.40

we’'ll see later how to guess 5 and v from sales data
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Example
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Example

House i (area) x» (beds) vy (price) ¥ (prediction)
1 0.846 1 115.00 161.37
2 1.324 2 234.50 213.61
3 1.150 3 198.00 168.88
4 3.037 4 528.00 430.67
5 3.984 5 572.50 552.66
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Linear dependence
set of n-vectors {ay,. ...ar} (with k > 1) is linearly dependent i

ﬂ,al + o+ Prag = 0
holds for some f3;..... B, that are not all zero

equivalent to: at least one «; is a linear combination of the others

we say ‘ay,...,q; are linearly dependent’

{a;} is linearly dependent only if a; = 0
{ay,a>} is linearly dependent only if one «; is a multiple of the other

for more than two vectors, there is no simple to state condition
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Example

» the vectors

[ 02 ] -0.1 0
ag=| -7 1], ap= 2 |y a=| -1
| 84 | = | 2.3 |

are linearly dependent, since a; + 2a> — 3az =0

» can express any of them as linear combination of the other two, e.g.,

ar = (=1/2)ay + (3/2)as3
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Linear independence

» set of n-vectors {uay,....ar} (with k > 1) is linearly independent if it is not
linearly dependent, i.e.,

prai + -+ Brag =0
holds only when B =--- = B; =0
» we say ‘dy....,qa; are linearly independent’

» equivalent to: no ¢; is a linear combination of the others

» example: the unit n-vectors ey.. .. .e, are linearly independent
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Linear combinations of linearly independent
vectors

» suppose x is linear combination of linearly independent vectors «y,. .., ax:
X = Bray +---+ Prag
» the coefficients S,,.... [y are unique, i.e., if
X =vypday + -+ Yrdg
then g; =y, fori=1,....k
» this means that (in principle) we can deduce the coefficients from x
» to see why, note that
(Br—yDay +---+ (B —y)ax =0

and so (by linear independence) 1 —y; == Br =y =0
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Independence-dimension inequality

» a linearly independent set of n-vectors can have at most n elements

» put another way: any set of n + 1 or more n-vectors is linearly dependent
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Basis

a set of n linearly independent n-vectors «,,. .. .a, is called a basis

any n-vector b can be expressed as a linear combination of them:

b= piay +---+ Bhay,
for some Bi,....0B,
and these coefficients are unique
formula above is called expansion of b in the a,,. . ..a, basis

example: ey,....,e, is a basis, expansion of b is

b — bl(’] + -4 bnen
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Orthonormal vectors

set of n-vectors «ay,...,q; are (mutually) orthogonal it a; L a; fori # j
they are normalized if ||a;|| = 1 fori=1,....,k
they are orthonormal if both hold

can be expressed using inner products as

r _ )1 i=j
"f“‘f“{ 0 i#)
orthonormal sets of vectors are linearly independent

by independence-dimension inequality, must have k < n

when k = n, ay.....a, are an orthonormal basis
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Examples of orthonormal bases

» standard unit n-vectors ey, . .

» the 3-vectors

» the 2-vectors shown below
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Orthonormal expansion

» ifuy,...,a,is an orthonormal basis, we have for any n-vector x
X = (aTx)at + -+ (a, )L)Cl
— [ ] n

» called orthonormal expansion of x (in the orthonormal basis)

» to verify formula, take inner product of both sides with ¢;
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Orthogonal sets
Let V' be a vector space with an inner product.

Definition. Nonzero vectors vi. vy, ... . v, €V

form an orthogonal set if they are orthogonal to
each other: (v;,v;) =0 for i/ # j.

It in addition, all vectors are of unit norm,
|vi|| =1, then vi,vy, ... vg is called an
orthonormal set.

Theorem Any orthogonal set is linearly
Independent.
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Orthogonal projection
Let V be an inner product space.

Let x,ve V, v#0. Then p= x,v)

(v,v)
orthogonal projection of the vector x onto the
vector v. That is, the remainder o=x—p is
orthogonal to v.

v Is the

If vi.vo,....v, is an orthogonal set of vectors then
X, V X, V X, V
P = (x 1>\I1+ X 2>V2+---+ ( n>Vn
(vi,v1) (v2,v2) (Vs Vi)

Is the orthogonal projection of the vector x onto
the subspace spanned by vi,....v,. Thatis, the

/
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Gram-Schmidt (orthogonalization) algorithm

Let V' be a vector space with an inner product.

Suppose Xi,Xp,...,X, Is a basis for V. Let
Vi = Xi,
- (x2,v1)
Vo = X2 — Vi,
<V1:V1>
X3, V X3, V
Vi — xs (X3, 1>V1 (x5, 2>V2,
(1, v1) (V2, v2)
X, V X, V)
Vn:xn_<n’ 1>V1— B <n nl) -
Vi, V1) (Vp-1.Vp-1)
Then vi,vy,...,v, is an orthogonal basis for V.
SpringSemester 2019 ey ot oo S sormers (QFORTH




Gram-Schmidt (orthogonalization) algorithm

Any basis Orthogonal basis
X1, X2, ..., Xp Vi,V2,...,Vp

Properties of the Gram-Schmidt process:
o v, =X, — (a1xy+ -+ ap1Xc1), 1 < k <n;

e the span of vi,....v, is the same as the span
of X1.....Xk;
e v, is orthogonal to xy,...,Xx_1;

® Vv, = Xx — Pk, Where p Is the orthogonal
projection of the vector x, on the subspace spanned

e ||vi| is the distance from xx to the subspace
spanned by xi,..., X, 1.

/
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Example

Using the Gram-Schmidt process, we orthogonalize
the basis x; = (1.2,2), xo =(—1,0,2), x3 = (0,0, 1):

Vi = X1 = (]., 2,2),

<X2jV1> 3
— wn — =(—1,0.2) —=(1.2.2
Vo = Xo <V1,v1>v1 (—1,0.2) 9( . 2,2)
Vs = x5 — (X3=V1>V1 B <X3?V2>v2
<V17 V1> <V27 V2>
2 4/3

(0.0.1) = 5(1.2.2) - —=(~4/3.-2/3.4/3)
(2/9.-2/9,1/9).
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Example

Now Vi — (13232), V) — (—4-/3j —2/3,4/3),
v3 = (2/9,—-2/9.1/9) is an orthogonal basis for R’

(Vi.v1) =9 = [jvi]| =3

(V2,v2) =4 = |vaf = 2

(vz,v3) =1/9 = ||v3|| =1/3

wi = vi/|vi = (1/3,2/3,2/3) = £(1,2,2),

wy = vy /|lvo| = (—=2/3,-1/3.2/3) = %( 2,—1,2),
vi/|vs]| = (2/3,-2/3,1/3) = 3(2,—2,1).

N

g
||
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Matrix-vector product function

» matrix-vector product of m X n matrix A, n-vector x, denoted y = Ax, with

Yi=AaXt+ - +AinXn, 1=1,...,m

B E

» for example,

» matrix-vector multiplication costs m(2n — 1) = 2mn flops
(for sparse A, around 2nnz(A) flops)
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Examples

> A IS m X n matrix

> y=Ax

> n-vector x is input or action

> m-vector y is output or result

> Aj; is the factor by which y; depends on x;
» Aj; is the gain from input j to output ¢

» e.qg., if Ais lower triangular, then y; only depends on x,. .. .x;
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Hadamard Product

* For two matrices, A, B, of the same dimension, m X n the
, , is a matrix, of the same
dimension as the operands, with elements given by

(AeB);; =(A);;-(B);;

* For example the Hadamard product for a 3 X 3 matrix A witha 3 X
3 matrix B is:

A11 A12 A13 Bll BlZ BlS AllBll AlZBIZ A13313
A21 A22 A23 ° BZl BZZ BZS = A21321 AZZBZZ A23BZS
A31 A32 A33 BBl BSZ BSS A31331 ASZBSZ ABBBSS
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Kronecker Product

*If Aisan m X n matrixand Bisa p X g matrix, then the

AR B=

A, B

A.,B

AnnB

A @ B is the mp X nq block matrix:

* For example, the Kronecker product fora 2 X 2 matrix A with a 2 X

3 matrix B is:
A11B11
A11B5,
AXB=
OB =14,5.,
| Ay1Bo1q

A11312
A11B2;
Az1B1;
A21B22

A11B13
A11B73
Az1B13
A21B23

AlZBll
A12B21
Az2B14
A22321

A12312
AlZBZZ
A22312
AZZBZZ

A17B43]
A17B53
A3y B3
Az, B3]
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Matrix-vector product function

» with A an m X n matrix, define f as f(x) =

> fis linear:

I

flax+ By) A(ax + By)
A(ax) + A(By)
=  a(Ax) + B(Ay)

= af(x)+ Bf(y)

» converse is true: if f : R" — R" is linear, then

f(x) = f(-xlel+x2€2+"'+xnen)

= xif(er) +xaf (e2) + - + x,f(ey)
= Ax

with A = [ f(el) f(€2) v (en) ]
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Examples

» reversal: f(x) = (XpsXn—1,.-.,X1)

> running sum: f(x) = (x1, X1 + X2, X1 + X2 + X3, ..

Spring Semester 2019
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Affine functions
function f : R" — R" is affine if it is a linear function plus a constant, i.e.,
f(x) =Ax+b

Same as.

flax+ By) = af (x) + Bf(y)
holds for all x, y, and a, B witha + g =1

can recover A and b from f using

A = [ fle)=fO) fle)=f(0) - flen)=f(0) ]
b = f(0)

affine functions sometimes (incorrectly) called linear

Spring Semester 2019
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Systems of linear equations

» set (or system) of m linear equations in n variables xy, ..., x,:

Allxl +A]2x2+---+A1,,x,, — bl
Aoixt +Apxy + - +Aux, = b
Amx1 +Amxa + - +Apnxn = bp,

» n-vector x is called the variable or unknowns
> A;; are the coefficients; A is the coefficient matrix
» b is called the right-hand side

» can express very compactly as Ax = b

CS-570 Statistical Signal Processing .g:“l
University of Crete, Computer Science Department '“ FORTH

o) Institute of Computer Science

Spring Semester 2019




Systems of linear equations

» systems of linear equations classified as

— under-determined if m < n (A wide)
— square if m = n (A square)
— over-determined if m > n (A tall)

» xis called a solutionif Ax =b

» depending on A and b, there can be

— no solution
— onhe solution
— many solutions
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Left inverse

» a number x that satisfies xa = 1 is called the inverse of
» inverse (i.e., 1/a) exists if and only if « # 0, and is unique
» a matrix X that satisfies XA = [ is called a /eft inverse of A
» if a left inverse exists we say that A is left-invertible

» example: the matrix

3 -4
A=| 4 6
11

has two different left inverses:

I -11 -10 16 1[0 -1
9 7 § —11 |’ B
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Left inverse and column independence

» if A has a left inverse C then the columns of A are linaerly independent

» to see this: if Ax =0 and CA = [ then
D=C0=CAx)=(CAx=Ir=x

» we'll see later the converse is also true, so
a matrix is left-invertible if and only if its columns are linearly independent

» matrix generalization of
a number is invertible if and only if it is nonzero

» so left-invertible matrices are tall or square

CS-570 Statistical Signal Processing £E
S 46
University of Crete, Computer Science Department S0 FORTH
R it

o) Institute of Computer Science

Spring Semester 2019




Solving linear equations with a left inverse

» suppose Ax = b, and A has a left inverse C
» then Cb = C(Ax) = (CA)x=Ix=x

» so multiplying the right-hand side by a left inverse yields the solution
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Right inverse

» a matrix X that satisfies AX = I is a right inverse of A
» if a right inverse exists we say that A is right-invertible

» A is right-invertible if and only if AT is left-invertible:
AX =] = @AX) =T e XA =1

» SO we conclude

A is right-invertible if and only if its rows are linearly independent

» right-invertible matrices are wide or square

Spring Semester 2019
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Solving linear equations with a right inverse

» suppose A has a right inverse B
» consider the (square or underdetermined) equations Ax = b

» x = Bb is a solution:
Ax =A(Bb) =(AB)b=1b=0>b

» so Ax = b has a solution for any b

Spring Semester 2019
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Generalized inverse

» if A has a left and a right inverse, they are unique and equal
(and we say that A is invertible)

» s0 A must be square

» toseethis: ifAX =1, YA =1
X=IX=YA)X=YAX)=YI=Y
» we denote them by A~ !
AT'A=Aa"" =1

» inverse of inverse: (A=) = A

Spring Semester 2019
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Solving square systems of linear equations

» suppose A is invertible

» for any b, Ax = b has the unique solution
x=A"1b

» maitrix generalization of simple scalar equation ax = b having solution
x = (1/a)b (for a # 0)

» simple-looking formula x = A~!b is basis for many applications
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Invertible matrices

the following are equivalent for a square matrix A:

» A is invertible

» columns of A are linearly independent
» rows of A are linearly independent

» A has a left inverse

» A has aright inverse

if any of these hold, all others do

CS-570 Statistical Signal Processing
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Pseudo-inverse of a tall matrix

» the pseudo-inverse of A with independent columns is
AT = a"a)~ 14"
» itis a left inverse of A:
ATA = (ATA)'1ATA = ATA) 1 ATA) =1
» reduces to A~! when A is square:

AT = (ATA) AT = A7 1ATAT = A7 = A7
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Pseudo-inverse of a wide matrix

> if A is wide, with linearly independent rows, AA” is invertible
» pseudo-inverse is defined as

At = AT(AAT)"!
» A" is a right inverse of A:

AAT = AAT(AAT) 1 =

» reduces to A~! when A is square:
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Least squares problem

suppose m X n matrix A is tall, so Ax = b is over-determined
for most choices of b, there is no x that satisfies Ax = b
residualisr = Ax - b
least squares problem: choose x to minimize ||Ax — b||?
|Ax — b||? is the objective function
X is a solution of least squares problem if
IA% - bI|* < ||Ax - b]|?
for any n-vector x

idea: x makes residual as small as possible, if not 0

also called regression (in data fitting context)
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Least squares problem

» X called least squares approximate solution of Ax = b

» X is sometimes called ‘solution of Ax = b in the least squares sense’

— this is very confusing
— never say this
— do not associate with people who say this

» X need not (and usually does not) satisfy Ax = b

» but if x does satisfy Ax = b, then it solves least squares problem
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Least squares problem — column
Interpretation
» suppose ai,....a, are columns of A

» then
IAx — b||I? = ||(x1ay + - - - + xpan) — bl|*

» S0 |least squares problem is to find a linear combination of columns of A
that is closestto b

» if X is a solution of least squares problem, the m-vector
A.i - .i:]al + T2aly X +.inan

is closest to b among all linear combinations of columns of A
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Least squares problem — row interpretation

> suppose al ... ..a, are rows of A

» residual components are r; = a,Tx — b;

» least squares objective is

lAx - b|I> = @Tx - b1)> + -+ + (@' x — by)?

the sum of squares of the residuals

» S0 least squares minimizes sum of squares of residuals

— solving Ax = b is making all residuals zero
— least squares attempts to make them all small
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Example

» Ax = b has no solution

» |east squares problem is to choose x to minimize
IAx = BII* = (2x; = D* + (—x1 + x2)* + (202 + 1)?

» least squares approximate solutionis X = (1/3,1/3) (say, via calculus)
|Ax — b||* = 2/3 is smallest posible value of ||Ax — b||?
» Ax = (2/3.-2/3,-2/3) is linear combination of columns of A closest to b

N
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Solution of least squares problem

» we make one assumption: A has linearly independent columns
» this implies that Gram matrix AT A is invertible

» unique solution of least squares problem is
2= (ATA) 1ATh=A"D

» cf. x = A~!b, solution of square invertible system Ax = b
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Matrix Calculus — The Gradient

*Let a function f:R™™ — R takes as input a matrix
A of size m x n and returns a real value.

* Then the gradient of f:

of(4) 9f(A)
0A1 0A19
0f(A) 9f(A)
VAf(A) c Rmxw, _ 0A21 0Aa2
of(A) 9f(4)
O0Am1 OAm2
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Matrix Calculus — The Gradient

* Every entry in the matrixis: v ,f(A));; = agéA).
ij

*The size of V,f(A) is always the same as the size of
A.

of (z)
0x1
of (x)
*Soif Aisjustavectorx: V,f(z)=| 9=

f(@)
Oxn,

Q
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Exercise

* Example:

For z € R", let f(x) = b’z for some known vector b € R"

fl)=1[by by ... by]"
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Exercise

* Example:

For z € R", let f(x) = b’z for some known vector b € R"

* From this we can conclude that: Vib'z = b
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Matrix Calculus — The Gradient

* Properties

o Vu(f(2)+g(2)) = Vaf(z) + Vag(2).
e Fort e R, V.(t f(x)) =tV.f(x).
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Matrix Calculus — The Hessian

* The Hessian matrix with respect to x, written Vif(z)

or simply as H is the n x n matrix of partial
derivatives

- () 0%f() 52f(z) -
Oz Ox10x2 0x10Tny
2f(z)  Of(x) 5 f(z)
Vif(l') c R™*" — 63:2.8931 8:1:% 83:2.63:”
2f(z)  02f(x) 5 f ()

L 0xn,0z1 OTnOzo Ox2
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Matrix Calculus — The Hessian
& f(z)

* Each entry can be written as: V(@) = 01,07,

0*f(z) _ 0*f(z)
’ 613%61}3 - 8$38$3

* The Hessian is always symmetric

* This is known as Schwarz's theorem: The order of
partial derivatives don’t matter as long as the
second derivative exists and is continuous.

N Institute of Computer Science



Matrix Calculus — The Hessian

* Note that the hessian is not the gradient of whole
gradient of a vector (this is not defined). It is

actually the gradient of every entry of the gradient
of the vector.

- B @) . ) -
8:1’:% 0x10x2 0x10Tn
i) Pfa) . Pl
v?cf(m) c R7X7 — O0x20xq Ox5 Oxo0x,
FPfx) o°f(x) .. f(z)

L 0z,0x1 Ozn,0z9 ox2
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Matrix Calculus — The Hessian

*Eg, the first column is the gradient of

- | 0% f(z) | 8% f(x)
Ox? 0r10x2
?f(z) | 9*f(x)
ng(ﬂ?) c RX7 — 83:2.33:1 83:%
221(@) | 224(2)
_ |02,0x1 | Oxnlxo
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Geometric transformations

» many geometric transformations and mappings of 2-D and 3-D vectors can
be represented via matrix multiplication y = Ax

» for example, rotation by &:
Ax

| cos# —sind l .
Y= 1 sin®  cosO | 0

(to get the entries, look at Ae; and Aes)
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Selectors

» an m x n selector matrix. each row is a unit vector (transposed)

- A

» multiplying by A selects entries of x:
AX = QXX )
» example: the m x 2m matrix

0
1

=
e R
0

| 9
0 0

|0 0 0 0 =« 1 0
‘down-samples’ by 2: if x is a 2m-vector then y = Ax = (x1.x3,. ... X2m-1)
» other examples: image cropping, permutation, ...
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Inner product interpretation

> With .:: the rows of A, b; the columns of B, we have

+ ﬂ;bz it ﬂ;bn
] ﬂ? bg s HE bn
AB = . .
‘4 T T
I a,b1 a,by --- a,b,

» 50 matrix product is all inner products of rows of A and columns of B,

arranged in a matrix
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Gram matrix

» let A be an m X n matrix with columns ay.. .. .ay,

» the Gram matrix of A is

aa, aa -+ a a,

T N
T T T

| a,ay a,a; --- a,a,

» Gram matrix gives all inner products of columns of A

» example: G = ATA = I means columns of A are orthonormal
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Complexity

» to compute C;; = (AB);; is inner product of p-vectors
» so total required flops is (mn)(2p) = 2mnp flops
» multiplying two 1000 x 1000 matrices requires 2 billion flops

» ...and can be done in well under a second on current computers
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